TEST NAME: Math 1 Geometry Test

TEST ID: 2093248
GRADE: 09 - Ninth Grade
SUBJECT: Mathematics
TEST CATEGORY: My Classroom

Student:

Class:
Date:

1. A city map is placed on a coordinate grid. Jane's house is located at (9, 1) and Bob's house at ($3,-7$). Melvin's house is halfway between Jane's house and Bob's house. What are the coordinates of Melvin's house?
A. $(3,3)$
B. $(4,-2)$
C. $(6,-4)$
D. $(15,5)$
2. A circle has a diameter that extends from $(4,-6)$ to $(-8,10)$. What are the coordinates of the center of the circle?

A $(-2,2)$
B. $(-3,6)$
C. $(-4,4)$
D. $(-6,8)$
3. A baseball team hosts an exhibition game in order to raise at least $\$ 5,000$ for new equipment. Regular stadium seats sell for $\$ 5$ each, but each of the 400 premium seats sells for $\$ 10$.
The coach draws up a feasible region in the coordinate plane, where x represents the number of premium seats the game sells, and y represents the number of regular seats the game sells. Which of the following inequalities is NOT a boundary condition for the feasible region?
A. $10 x+5 y \geq 5000$
B. $x+y \geq 5000$
C. $x \leq 400$
D. $x \geq 0$
4. The vertices of a quadrilateral are located at $(-3,4),(2,7),(5,2)$, and ($0,-1$). Which best describes the quadrilateral?

A parallelogram
B. rectangle
C. rhombus
D. square
5. Which is an equation of a line that is parallel to the line that passes through the point $(-2,3)$ and $(0,2)$?
A. $y={ }^{-} \frac{1}{2} x+2$
B. $y=\frac{1}{2} x+1$
C. $y=x+3$
D. $y=2 x-4$
6. A top view of a natural trail is shown on the grid below.

Top View of Nature Trail

- There is a water station at the midpoint of Determine the coordinates of the water station and write them on the map. In the space below, show work to support your answer.
- Determine the lengths of <img src="image/mml2626722.png" alt=""
xmlns="http://www.imsglobal.org/xsd/imsqti_v2p1" /> and Show all work necessary to support your answer.
- Joe follows the nature trail from A to B, B to C, C to D, and then back to A. Determine whether Point C is before or after the half-way point in his journey. Show work or write an explanation to support your answer.

7. What is the slope of a line that is parallel to the graph of $y=\frac{1}{4} x-3$?
A. -4
B. $-\frac{1}{4}$
C. $\frac{1}{4}$
D. 4
8. $\triangle E F G$ is a right triangle. The measure of $\angle G$ is 90°. Vertices F and G are located at $F(-1,-1)$ and $G(2,3)$. What is the slope of $\overline{E G}$?
A. $\frac{4}{3}$
B. $-\frac{4}{3}$
C. $\frac{3}{4}$
D. $-\frac{3}{4}$
9. A circle is centered at $(3,-1)$. Line segment $P Q$ is a diameter of the circle. Point P is located at $(6,3)$. What are the coordinates of point Q ?

A $(-3,-4)$
B. $(0,-5)$
C. $(4.5,1)$
D. $(9,2)$
10. Which coordinate represents the midpoint between $(-6,-k)$ and $(2, k)$?

A $(-2,0)$
B. $(-4,0)$
C. $(-4,-k)$
D. $(-8,-2 k)$
11. Line k passes through points $(4,3)$ and $(8,2)$. What is the slope of a line perpendicular to line k ?
A. -4
B. $-\frac{1}{4}$
C. $\frac{1}{4}$
D. 4
12. A rail line is mapped on a coordinate grid with station A at $A(12,14)$ and station B at $B(-10,-8)$. A train leaves station A at the same time another train leaves station B on a parallel track. The train leaving station A is traveling at 30 miles per hour, and the train leaving station B is traveling at 25 miles per hour. If the trains are traveling toward each other at a constant speed, what are the coordinates of the location at which the trains will pass each other?

A $(0,2)$
B. $(1,3)$
C. $(2,4)$
D. $(3,5)$
13. Which equation is parallel to a line that passes through the points $(4,-5)$ and $(2,6)$?
A. $y=\frac{2}{11} x+15$
B. $y=\frac{-2}{11} x-17$
c.

$$
y=-\frac{11}{2} x+15
$$

D. $y=\frac{11}{2} x+17$
14. What is the midpoint of the line segment that contains $(-2,3)$ and $(1,-4)$?

A $\left(-\frac{5}{2}, \frac{5}{2}\right)$
B. $\left(-\frac{3}{2}, \frac{7}{2}\right)$
C. $\left(-\frac{1}{2},-\frac{1}{2}\right)$
D. $\left(\frac{1}{2},-\frac{3}{2}\right)$
15. Which is an equation of a line that is perpendicular to line t on the graph below?

A $2 x-3 y=-9$
B. $3 x+2 y=18$
C. $2 x+3 y=21$
D. $3 x-2 y=-2$
16. Andrew drew parallelogram $P Q R S$ on a coordinate plane with vertices at $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right), R\left(x_{3}, y_{3}\right)$, and $S\left(x_{4}, y_{4}\right)$. Which set of assertions is sufficient to prove that $P Q R S$ is a square?

A $\sqrt{\left(x_{4}+x_{1}\right)^{2}+\left(y_{4}+y_{1}\right)^{2}}=\sqrt{\left(x_{2}+x_{1}\right)^{2}+\left(y_{2}+y_{1}\right)^{2}}$ and $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{x_{4}-x_{1}}{y_{1}-y_{4}}$
B. $\sqrt{\left(x_{4}-x_{1}\right)^{2}+\left(y_{4}-y_{1}\right)^{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ and $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y_{4}-y_{1}}{x_{4}-x_{1}}$
c. $\sqrt{\left(x_{4}+x_{1}\right)^{2}+\left(y_{4}+y_{1}\right)^{2}}=\sqrt{\left(x_{2}+x_{1}\right)^{2}+\left(y_{2}+y_{1}\right)^{2}}$ and $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y_{4}-y_{1}}{x_{4}-x_{1}}$
D. $\sqrt{\left(x_{4}-x_{1}\right)^{2}+\left(y_{4}-y_{1}\right)^{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ and $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{x_{4}-x_{1}}{y_{1}-y_{4}}$
17. What best describes the shape of the figure that has vertices at $(-1,-3)$, $(-5,-6),(3,-12)$, and ($7,-9$)?

A parallelogram
B. rectangle
C. rhombus
D. square
18. The center of a circle is at $Q(0,6)$. A radius is drawn from Q to $P(4,6)$. What are the coordinates of the endpoint of the diameter that includes segment $P Q$?

A $(0,2)$
B. $(0,10)$
C. $(-4,6)$
D. $(6,-4)$
19. The graph of $a x+5 y=9$ is perpendicular to the graph of $5 x+y=-8$. What is the value of a ?

A ${ }^{-1}$
B. $-\frac{1}{5}$
C. 1
D. 5
20. Triangle $X Y Z$ is shown on the graph below.

What is the approximate area of triangle $X Y Z$?
A 20 units 2
B. 26 units 2
C. 40 units 2
D. 52 units 2
21. What is the approximate perimeter of a quadrilateral with vertices (2, $5),(5,4),(4,-4)$, and ($-1,-2$)?

A 12.7 units
B. 21.6 units
C. 24.3 units
D. 26.3 units
22. A straight road is to be built between the two cities. There will be a rest stop placed halfway between the cities. When placed on a coordinate grid, the rest stop is located at $(3,8)$. Which points could represent the location of the 2 cities?

A $(17,14)$ and $(14,6)$
B. $(1,5)$ and $(5,13)$
C. $(-5,-4)$ and $(11,20)$
D. $(-6,-8)$ and $(-3,0)$
23. Triangle $P Q R$ has vertices located at $(2,2),(5,-4)$, and $(-4,-1)$. What type of triangle is triangle $P Q R$?

A equilateral
B. isosceles
C. obtuse
D. scalene
24. What are the coordinates of the midpoint of the line segment with endpoints at $(4.5,7.5)$ and $(9,12)$?

A $(6.5,9.5)$
B. $(6.75,9.75)$
C. $(7.75,10.75)$
D. $(13.5,19.5)$
25. Andy is studying a quadrilateral with the vertices $A(6,1), B(8,2), C(9,4)$, and $D(7,3)$. Which statement explains how Andy could prove what kind of quadrilateral this is?

A find the slopes of the pairs of opposite sides to show that the figure is a parallelogram
B. find the slopes of the pairs of opposite sides to show that the quadrilateral is a rectangle
c. find the lengths of the diagonals to show that the quadrilateral is a parallelogram
D. find the lengths of the diagonals to show that the quadrilateral is a rectangle
26. Which is an equation of the line that passes through the point $(2,0)$ and is parallel to the graph of $y=-4 x+1$?

A $y=-4 x+2$
B. $y=-4 x+8$
c. $y=\frac{1}{4} x-\frac{1}{2}$
D. $y=\frac{1}{4} x+\frac{1}{2}$
27. Ashley is buying a border for her flowerbed. She makes a graphed model of the border in which 1 unit equals 1 foot. The vertices of her flowerbed are $(-4,2),(-6,7),(0,11),(4,9)$, and $(4,2)$. Each foot of border costs $\$ 1.09$. About how much will Ashley spend on the border?

A $\quad \$ 29$
B. $\$ 32$
C. $\$ 33$
D. $\$ 35$
28. Point A is located at $(6,3)$ and point D is at $(18,21)$. If points B and C are located on $\overline{A D}$ such that the ratio $A B: B C: C D$ is equal to $1: 1: 1$, what are the coordinates of points B and C ?

A $B(9,7.5)$ and $C(12,12)$
B. $\quad B(10,9)$ and $C(14,15)$
C. $B(14,11)$ and $C(26,19)$
D. $B(12,12)$ and $C(15,16.5)$
29. A triangle has the vertices $X(3,1), Y(6,2)$, and $Z(4,3)$. Which statement is true?

A Angle X is a right angle.
B. Angle Y is a right angle.
C. Angle Z is a right angle.
D. None of the angles is a right angle.
30. The endpoints of a line segment are located at $(3,6)$ and $(4,-5)$. What are the coordinates of the midpoint of the line segment?

A $\left(\frac{7}{2}, \frac{1}{2}\right)$
B. $\left(\frac{1}{2},-\frac{11}{2}\right)$
C. $\left(\frac{9}{2},-\frac{1}{2}\right)$
D. $(7,1)$
31. Which best describes the quadrilateral with vertices at $(7,8),(9,10),(7$, $12)$, and (5, 10)?

A non-square rectangle
B. non-square rhombus
C. square
D. trapezoid
32. Four friends plotted the locations of their houses on a coordinate plane.

- Sarah's house is located at $(7,-2)$.
- Mandy's house is located at $(3,5)$.
- Cameron's house is exactly halfway between Sarah's house and Mandy's house.
- Kayla's house is exactly halfway between Cameron's house and Mandy's house.

What are the coordinates of Kayla's house?
A $\left(2,-\frac{7}{2}\right)$
B. $\left(4, \frac{13}{4}\right)$
C. $\left(5, \frac{3}{2}\right)$
D. $\left(6,-\frac{1}{4}\right)$
33. The vertices of a triangle are located at $(0,0),(5,12)$, and $(10,0)$. What is the perimeter of this triangle?

A 26 units
B. 30 units
C. 36 units
D. 60 units
34. Line segment $J K$ has endpoints at $J(-3,4)$ and $K(3,6)$. Which is an equation of a line that is perpendicular to line segment $J K$ and passes through the point ($3,-12$)?

A $y=\frac{1}{3} x-13$
B. $y=\frac{1}{3} x-11$
C. $y=-3 x-21$
D. $y=-3 x-3$
35. What is the approximate perimeter of a triangle that has vertices at (${ }^{-1}$, $-9),(6,-3)$, and ($-3,5$)?

A 37.0 units
B. 35.4 units
C. 25.1 units
D. 22.3 units
36. A circle has a center point at $(-8,-7)$. Line segment $E F$ is a diameter of the circle. Point F is located at $(-2,-12)$. What are the coordinates of point E ?

A $(-14,-2)$
B. $(-10,-19)$
C. $(-5,-10)$
D. $(4,-17)$
37. The map below shows the course of a charity walk placed upon a coordinate grid.

If the scale is 1 unit $=0.1$ mile, what is the approximate total distance of the course?

A 27 miles
B. 23 miles
C. 2.7 miles
D. 2.3 miles
38. A figure has vertices at $(2,5),(4,3),(5,4)$, and $(3,6)$. Which most precisely describes the figure?

A parallelogram
B. rectangle
c. rhombus
D. square
39. Jason marks two points, $A(4,6)$ and $B(8,2)$, on a coordinate grid. He then marks point C on $\overline{A B}$.

- If point C divides $\overline{A B}$ in the ratio $\overline{A C}: \overline{C B}=1: 3$, what are the coordinates of point C ?
- Jason wants to check to be sure he calculated the location of point C correctly. Show one way he could do this.

Use words, numbers and/or pictures to show your work.
40. The students of Lincoln High School are raising money to support the sports teams. A local organization donated boxes of popcorn and candy for the students to sell. The freshmen are selling boxes of popcorn for $\$ 2$ each, and the sophomores are selling boxes of candy for $\$ 4$ each. The students' target is to raise more than $\$ 800$. The sophomores expect to sell at most 100 boxes of candy. Let x represent the number of boxes of popcorn sold and y represent the number of boxes of candy sold. Which system of inequalities models the given situation?

A $\left\{\begin{array}{l}y<100 \\ 2 x+4 y>800\end{array}\right.$
B. $\int y \leq 100$
$2 x+4 y>800$
C. $\{y<100$
$4 x+2 y>800$
D. $\left\{\begin{array}{l}y \leq 100 \\ 4 x+2 y>800\end{array}\right.$

