TEST NAME: Math 1 Geometry Test TEST ID: 2093248 GRADE: 09 - Ninth Grade SUBJECT: Mathematics TEST CATEGORY: My Classroom

Student:	
Class:	
Date:	

- A city map is placed on a coordinate grid. Jane's house is located at (9, 1) and Bob's house at (3, -7). Melvin's house is halfway between Jane's
 house and Bob's house. What are the coordinates of Melvin's house?
 - A (3,3)
 - B. (4, ⁻2)
 - ^{C.} (6, ⁻4)
 - D. (15, 5)
- ^{2.} A circle has a diameter that extends from (4, ⁻6) to (⁻8, 10). What are the coordinates of the center of the circle?
 - A (-2, 2)
 - ^{B.} (⁻3, 6)
 - C. (-4, 4)
 - D. (-6, 8)
- ^{3.} A baseball team hosts an exhibition game in order to raise at least \$5,000 for new equipment. Regular stadium seats sell for \$5 each, but each of the 400 premium seats sells for \$10.

The coach draws up a feasible region in the coordinate plane, where x represents the number of premium seats the game sells, and y represents the number of regular seats the game sells. Which of the following inequalities is NOT a boundary condition for the feasible region?

- A $10x + 5y \ge 5000$
- B. $x + y \ge 5000$
- C. x ≤ 400
- D. $\chi \ge 0$

- ^{4.} The vertices of a quadrilateral are located at (⁻³, 4), (2, 7), (5, 2), and (0, -1). Which **best** describes the quadrilateral?
 - A parallelogram
 - rectangle Β.
 - C. rhombus
 - D. square
- 5. Which is an equation of a line that is parallel to the line that passes through the point (-2, 3) and (0, 2)?
 - A. $y = \frac{1}{2}x + 2$ $y = \frac{1}{2}x + 1$ В. ^{C.} y = x + 3^{D.} y = 2x - 4

6. A top view of a natural trail is shown on the grid below.

Top View of Nature Trail

• There is a water station at the midpoint of Determine the coordinates of the water station and write them on the map. In the space below, show work to support your answer.

• Determine the lengths of and Show all work necessary to support your answer.

• Joe follows the nature trail from A to B, B to C, C to D, and then back to A. Determine whether Point C is before or after the half-way point in his journey. Show work or write an explanation to support your answer.

^{7.} What is the slope of a line that is parallel to the graph of $y = \frac{1}{4}x - 3$?

 $\begin{array}{c} A & -4 \\ B & -\frac{1}{4} \\ C & \frac{1}{4} \\ D & 4 \end{array}$

- ^{8.} $\triangle EFG$ is a right triangle. The measure of $\angle G$ is 90°. Vertices *F* and *G* are located at *F*(-1, -1) and *G*(2, 3). What is the slope of \overline{EG} ?
 - $A \quad \frac{4}{3}$ $B \quad -\frac{4}{3}$ $C \quad \frac{3}{4}$ $D \quad -\frac{3}{4}$
- 9. A circle is centered at (3, -1). Line segment PQ is a diameter of the circle. Point P is located at (6, 3). What are the coordinates of point Q?
 - A (-3, -4)
 - B. (0, ⁻5)
 - ^{C.} (4.5, 1)
 - D. (9, 2)
- ^{10.} Which coordinate represents the midpoint between ($^{-6}$, $^{-k}$) and (2, k)?
 - A (-2,0)
 - B. (-4, 0)
 - C. (-4, -k)
 - D. (-8, -2*k*)
- ^{11.} Line k passes through points (4, 3) and (8, 2). What is the slope of a line perpendicular to line k?

 - ^{D.} 4

- ^{12.} A rail line is mapped on a coordinate grid with station A at A(12, 14)and station B at B(-10, -8). A train leaves station A at the same time another train leaves station B on a parallel track. The train leaving station A is traveling at 30 miles per hour, and the train leaving station B is traveling at 25 miles per hour. If the trains are traveling toward each other at a constant speed, what are the coordinates of the location at which the trains will pass each other?
 - A. (0,2)
 - B. (1,3)
 - C. (2,4)
 - D. (3,5)
- $^{13.}$ Which equation is parallel to a line that passes through the points (4, $^{-}5)$ and (2, 6)?

^A
$$y = \frac{2}{11}x + 15$$

^{B.} $y = \frac{2}{11}x - 17$
^{C.} $y = \frac{-11}{2}x + 15$
^{D.} $y = \frac{11}{2}x + 17$

14. What is the midpoint of the line segment that contains (-2, 3) and (1, -4)?

A.	$\left(-\frac{5}{2},\frac{5}{2}\right)$
B.	$\left(-\frac{3}{2},\frac{7}{2}\right)$
C.	$\left(-\frac{1}{2}, -\frac{1}{2}\right)$
D.	$\left(\frac{1}{2}, -\frac{3}{2}\right)$

^{15.} Which is an equation of a line that is perpendicular to line t on the graph below?

- A 2x 3y = -9
- B. 3x + 2y = 18
- C. 2x + 3y = 21
- D. 3x 2y = -2
- ^{16.} Andrew drew parallelogram *PQRS* on a coordinate plane with vertices at $P(x_1, y_1), Q(x_2, y_2), R(x_3, y_3)$, and $S(x_4, y_4)$. Which set of assertions is sufficient to prove that *PQRS* is a square?

A
$$\sqrt{(x_4+x_1)^2+(y_4+y_1)^2} = \sqrt{(x_2+x_1)^2+(y_2+y_1)^2}$$
 and $\frac{y_2-y_1}{x_2-x_1} = \frac{x_4-x_1}{y_1-y_4}$
B. $\sqrt{(x_4-x_1)^2+(y_4-y_1)^2} = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ and $\frac{y_2-y_1}{x_2-x_1} = \frac{y_4-y_1}{x_4-x_1}$
C. $\sqrt{(x_4+x_1)^2+(y_4+y_1)^2} = \sqrt{(x_2+x_1)^2+(y_2+y_1)^2}$ and $\frac{y_2-y_1}{x_2-x_1} = \frac{y_4-y_1}{x_4-x_1}$
D. $\sqrt{(x_4-x_1)^2+(y_4-y_1)^2} = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ and $\frac{y_2-y_1}{x_2-x_1} = \frac{x_4-x_1}{y_1-y_4}$

- ¹⁷ What **best** describes the shape of the figure that has vertices at (-1, -3), (-5, -6), (3, -12), and (7, -9)?
 - A parallelogram
 - B. rectangle
 - ^{C.} rhombus
 - D. square
- ^{18.} The center of a circle is at Q(0, 6). A radius is drawn from Q to P(4, 6). What are the coordinates of the endpoint of the diameter that includes segment PQ?
 - A (0, 2)
 - ^{B.} (0, 10)
 - ^{C.} (⁻4, 6)
 - D. (6, -4)
- ^{19.} The graph of ax + 5y = 9 is perpendicular to the graph of 5x + y = -8. What is the value of *a*?
 - ^A -1
 - B. -<u>1</u>5
 - ^{C.} 1
 - -
 - ^{D.} 5

 $^{20.}$ Triangle *XYZ* is shown on the graph below.

What is the *approximate* area of triangle XYZ?

- A 20 units²
- ^{B.} 26 units²
- C. 40 units²
- D. 52 units²
- ^{21.} What is the *approximate* perimeter of a quadrilateral with vertices (2, 5), (5, 4), (4, ⁻4), and (⁻1, ⁻2)?
 - A 12.7 units
 - B. 21.6 units
 - ^{C.} 24.3 units
 - D. 26.3 units

- ^{22.} A straight road is to be built between the two cities. There will be a rest stop placed halfway between the cities. When placed on a coordinate grid, the rest stop is located at (3, 8). Which points could represent the location of the 2 cities?
 - A (17, 14) and (14, 6)
 - ^{B.} (1, 5) and (5, 13)
 - ^{C.} (⁻5, ⁻4) and (11, 20)
 - D. (-6, -8) and (-3, 0)
- ^{23.} Triangle *PQR* has vertices located at (2, 2), (5, ⁻4), and (⁻4, ⁻1). What type of triangle is triangle *PQR*?
 - A equilateral
 - B. isosceles
 - ^{C.} obtuse
 - D. scalene
- ^{24.} What are the coordinates of the midpoint of the line segment with endpoints at (4.5, 7.5) and (9, 12)?
 - A (6.5, 9.5)
 - ^{B.} (6.75, 9.75)
 - C. (7.75, 10.75)
 - D. (13.5, 19.5)
- ^{25.} Andy is studying a quadrilateral with the vertices A(6, 1), B(8, 2), C(9, 4), and D(7, 3). Which statement explains how Andy could prove what kind of quadrilateral this is?
 - A find the slopes of the pairs of opposite sides to show that the figure is a parallelogram
 - ^{B.} find the slopes of the pairs of opposite sides to show that the quadrilateral is a rectangle
 - ^{C.} find the lengths of the diagonals to show that the quadrilateral is a parallelogram
 - $\ensuremath{^{\text{D.}}}$ find the lengths of the diagonals to show that the quadrilateral is a rectangle

^{26.} Which is an equation of the line that passes through the point (2, 0) and is parallel to the graph of y = -4x + 1?

^A
$$y = -4x + 2$$

^{B.} $y = -4x + 8$
^{C.} $y = \frac{1}{4}x - \frac{1}{2}$
^{D.} $y = \frac{1}{4}x + \frac{1}{2}$

- ^{27.} Ashley is buying a border for her flowerbed. She makes a graphed model of the border in which 1 unit equals 1 foot. The vertices of her flowerbed are (⁻4, 2), (⁻6, 7), (0, 11), (4, 9), and (4, 2). Each foot of border costs \$1.09. *About* how much will Ashley spend on the border?
 - a. \$29
 - в. \$32
 - c. \$33
 - D. \$35
- ^{28.} Point *A* is located at (6, 3) and point *D* is at (18, 21). If points *B* and *C* are located on \overline{AD} such that the ratio AB : BC : CD is equal to 1 : 1 : 1, what are the coordinates of points *B* and *C*?
 - A B(9, 7.5) and C(12, 12)
 - B. B(10, 9) and C(14, 15)
 - C. B(14, 11) and C(26, 19)
 - D. B(12, 12) and C(15, 16.5)
- ^{29.} A triangle has the vertices X(3, 1), Y(6, 2), and Z(4, 3). Which statement is true?
 - A Angle X is a right angle.
 - ^{B.} Angle *Y* is a right angle.
 - C. Angle Z is a right angle.
 - D. None of the angles is a right angle.

- ^{30.} The endpoints of a line segment are located at (3, 6) and (4, -5). What are the coordinates of the midpoint of the line segment?
 - $A \quad \left(\frac{7}{2}, \frac{1}{2}\right)$
 - B. $\left(\frac{1}{2}, -\frac{11}{2}\right)$
 - C. $\left(\frac{9}{2}, \frac{-1}{2}\right)$
 - ^{D.} (7, 1)
- ^{31.} Which **best** describes the quadrilateral with vertices at (7, 8), (9, 10), (7, 12), and (5, 10)?
 - A non-square rectangle
 - B. non-square rhombus
 - ^{C.} square
 - D. trapezoid
- ^{32.} Four friends plotted the locations of their houses on a coordinate plane.
 - Sarah's house is located at (7, -2).
 - Mandy's house is located at (3, 5).
 - Cameron's house is exactly halfway between Sarah's house and Mandy's house.
 - Kayla's house is exactly halfway between Cameron's house and Mandy's house.

What are the coordinates of Kayla's house?

$$A \left(2, \frac{7}{2}\right)$$

- B. $(4, \frac{13}{4})$
- ^{C.} $\left(5,\frac{3}{2}\right)$
- D. $\left(6, \frac{1}{4}\right)$

- $^{33.}$ The vertices of a triangle are located at (0, 0), (5, 12), and (10, 0). What is the perimeter of this triangle?
 - A 26 units
 - B. 30 units
 - C. 36 units
 - D. 60 units
- ^{34.} Line segment *JK* has endpoints at J(-3, 4) and K(3, 6). Which is an equation of a line that is perpendicular to line segment *JK* and passes through the point (3, -12)?
 - ^A $y = \frac{1}{3}x 13$ ^{B.} $y = \frac{1}{3}x - 11$ ^{C.} y = -3x - 21^{D.} y = -3x - 3
- ^{35.} What is the *approximate* perimeter of a triangle that has vertices at (⁻¹, ⁻⁹), (6, ⁻³), and (⁻³, 5)?
 - A 37.0 units
 - B. 35.4 units
 - c. 25.1 units
 - D. 22.3 units
- ^{36.} A circle has a center point at ($^{-8}$, $^{-7}$). Line segment *EF* is a diameter of the circle. Point *F* is located at ($^{-2}$, $^{-12}$). What are the coordinates of point *E*?
 - ^A (⁻14, ⁻2)
 - ^{B.} (⁻10, ⁻19)
 - ^{C.} (⁻⁵, ⁻10)
 - D. (4, ⁻17)

^{37.} The map below shows the course of a charity walk placed upon a coordinate grid.

If the scale is 1 unit = 0.1 mile, what is the **approximate** total distance of the course?

- A 27 miles
- B. 23 miles
- C. 2.7 miles
- D. 2.3 miles
- ^{38.} A figure has vertices at (2, 5), (4, 3), (5, 4), and (3, 6). Which most precisely describes the figure?
 - A parallelogram
 - B. rectangle
 - C. rhombus
 - D. square

- ^{39.} Jason marks two points, A(4, 6) and B(8, 2), on a coordinate grid. He then marks point C on \overline{AB} .
 - If point *C* divides \overline{AB} in the ratio $\overline{AC:CB} = 1:3$, what are the coordinates of point *C*?
 - Jason wants to check to be sure he calculated the location of point *C* correctly. Show one way he could do this.

Use words, numbers and/or pictures to show your work.

- ^{40.} The students of Lincoln High School are raising money to support the sports teams. A local organization donated boxes of popcorn and candy for the students to sell. The freshmen are selling boxes of popcorn for \$2 each, and the sophomores are selling boxes of candy for \$4 each. The students' target is to raise **more than** \$800. The sophomores expect to sell **at most** 100 boxes of candy. Let *x* represent the number of boxes of popcorn sold and *y* represent the number of boxes of candy sold. Which system of inequalities models the given situation?
 - $A \begin{cases} y < 100\\ 2x + 4y > 800 \end{cases}$
 - B. $\begin{cases} y \le 100\\ 2x + 4y > 800 \end{cases}$
 - C. $\begin{cases} y < 100 \\ 4x + 2y > 800 \end{cases}$
 - D. $\begin{cases} y \le 100\\ 4x + 2y > 800 \end{cases}$

